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packet representation of contaminated chaotic
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Abstract

We report a suboptimal wavelet packet (WP) representation of signals emanating
from a chaotic attractor contaminated by low levels of noise. Our method—geared to-
wards choosing a suboptimal scaling function to parsimoniously represent the signal—
involves extracting local eigenfunctions using artificial ensembles generated from a
pseudo-probability space, and using the extracted local eigenfunctions to develop a sub-
optimal scaling function.

The application of our novel representation method to actual acoustic emission
(AE) signals from the turning process reveals the superiority of these methods over the

existing signal representations.
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1 Introduction

Signal representation is an essential step in many engineering signal processing ap-
plications, such as pattern recognition and state estimation. The key task of signal
representation is to find a basis to parsimoniously represent a given signal. In ad-
dition, the basis should (i) capture essential signal features such as discontinuities,
(ii) match the smoothness of the signal, (iii) accomodate rapid fluctuations in the sig-
nal, (iv) cater to the stochasticity and the distribution of the signal, and (v) be usable
on-line.

If the signal belongs to a separable space such as the Hilbert space, we can compactly
represent the signal by a countable basis, i.e., there are at the most countable infinity
of elements (here, the basis functions) in the basis. For example, suppose the signal
emanates from a second order stochastic process,\i.e., a process whose autocorrelation
function remains finite and integrable over a specified interval. The space of second
order processes L,(R, B, u)—where B is the Borel-algebra constructed on the real line
R and g is the underlying probability measure—is complete and separable; therefore
we may employ Karhunen-Loeve (KL) representatioﬁ to obtain a basis.

The KL representation of a second order stochastic process y(t) is given by

y(t) = Y ajo;(t), (1)

j€Z

where Z is the set of integers, and a;(t) are the independent solutions of

/R K(t, m)a;(r)dr = Xja;(t) (2)




(i.e., a;(t) are the eigenfunctions of the covariance function K(t,7)). Since K(t,7) is
self-adjoint [9], the KL representation consists of expressing a given signal as a linear
combination of a few orthonormal modes. Since the basis is orthonormal and consists
of the eigenfunctions of the stochastic process underlying a measured signal, the KL
representation is optimal in the mean square sense.

But, computing eigenfunctions of a generic second order process is extremely te-
dious. In addition, from an implementation standpoint, the KL representation needs
a few ensembles of a stochastic sequence to estimate K(2, 7). In the absence of ensem-
bles, i.e., when only one realization is available, we somehow need to generate some
artificial ensembles in order to develop a KL-like representation.

Alternatively, Fourier and wavelet representations are optimal under certain condi-
tions and are commonly used in practice (3]. But they do not use eigenfunction basis.
Of all the non-eigenfunction bases, wavelet bases are currently the most attractive,
because of their ability to satisfy the five desirable properties mentioned earlier. By
proper selection of wavelet basis, one may develop optimal representations of many
classes of signals (8, 11].

Wavelet representation is algorithmically simple for representing transient signals
in Lo-space. Many researchers have focussed on finding optimal wavelet basis. Coifman
and Wickerhauser [12] in their best basis formulation proposed that, given an overcom-
plete set of basis functions belonging to a wavelet packet (WP) library, we may choose
their optimal combination through a branch-and-bound method of entropy minimiza-
tion. However, the WP library and hence the basis functions themselves are not chosen

optimally with respect to the considered class of signals.




For the past one decade, several researchers have attempted to determine the op-
timal wavelet basis for different signal classes. Odegard et al. (8} developed optimal
finite support wavelet basis to represent band-limited signals by minimizing the induced
norm of the resolution error operator at every scale with respect to the scaling function
of that scale. Their “robust” basis minimizes the worst-case error for all signals limited
to a particular frequency band.

Unser (11] showed that, when the signal is 2 realization of a stationary process, the
optimal scaling function is the impulse response of an ideal bandpass filter whose shape
is determined by the signal energy. His analysis showed that the determination of an
optimal scaling function for biorthogonal wavelet representation of a generic signal in
L, space is mathematically intractable.

Strintzis {10 developed the necessary conditions for a globally optimal scaling func-
tionof a band-limited multidimensional signal, represented using biorthogonal wavelets.
He found that computing a globally optimal scaling function for a generic multidimen-
sional signal is mathematically intractable and, in many cases, not realizable.

Computationally simple methods are commonly used to determine suboptimal scal-
ing functions (11, 10}. Either the structure of the synthesis filter (i.e., the filter to
perform inverse wavelet transform) is assumed a priort, and the analysis filter (filter
for wavelet transform) is constructed therefrom; or a Butterworth-filter-type approxi-
mation of the ideal unrealizable analysis-synthesis pair is performed.

However, most of the ear\ier works assume the signal to emanate from a station-
ary stochastic process with a known variance. None of the previous works explicitly

addressed the issue of the optimal rcprcsentation of chaotic signals. Realistically, con-



inated chaotic signals are more common than stationary signals. Hence, research

finding the optimal representation of contaminated chaotic signals seems to be in

der.

In this paper, we develop a suboptimal scaling function using the local eigenfunc-
Lions, extracted as described in the following two sections, to represent signals emanat-
ing from a chaotic process contaminated with low levels of noise. In other words, we
develop a suboptimal wavelet packet (WP) representation of a signal which is a single
realization of a chaotic process contaminated with low intensity noise.

Our methodology consists of (i) generating actifical ensembles from a pseudo-probability
space, constructed from a measured signal, as explained in Section 2; (ii) extracting
local eigenfunctions from the pseudo-probabability space, as described in Section 3
(these local eigenfunctions may be used to develop a computationally expensive KL-
like representation scheme—called the local eigenfunction representation—from the
obtained ensembles); and (iii) using the extracted local eigenfunctions for suboptimal

WP representation, as described in Section 4.

9 Constructing pseudo-probability space of a

chaotic attractor

Since the considered signal corresponds to a single trajectory of a contaminated chaotic
process, the KL representation cannot be directly used. However, by appropriately
constructing a pseudo-probabilily space and an associated proabability measure from

the TSD, we can extract artificial ensembles to develop a KL-like representation. The



constructing of such a space and the associated probability measure for a dynamical
system is studied in ergodic theory (4], which broadly deals with developing invariant
measures for a dynamic system. Before we proceed further towards constructing the
pseudo-probability space, let us review certain relevant aspects of dynamic systems

and reinforce the concept of invariant measures.

2.1 Overview of ergodic theory and our approach

Suppose a dynamic system is modeled in terms of autonomous [7] nonlinear stochastic
differential/difference equations with a state vector z(t) € M (the state space) and a

discrete output y(n) = y(tn) as follows:

dz = FE(z)dt+g(z)df, (3)

y(n) = h(z(n))+v(n);n=0,1,2,...N. (4)

Here, (3) represents the process sylem and (4) represgnts the measurement setup. Fur-
thermore, F(-) is a nonlinear stochastic vector field, _g() and h(-) are continuous
transformations, (3 is a vector Wiener process (9] that accounts for dynamic noise,
z(n) = z(t,), and v(n) is a Gaussian white noise sequence (5] that accounts for ad-
ditive measurement noise. As this is an autonomous system, F(z) and g(g) are not
explicit functions of time t. Equation (3) is an It6 equation [5) because the gain matrix
g(g) is a stochastic process.

When there is no dynamic noise, i.e., g(z) d8 = 0, the solution to (3) results in a

6



trajectory

E(t) = L(Q(O),t) ) (5)

where f : M — M represents the flow that determines the evolution of z(t) from a
specific initial condition z(0). If the sytem is dissipative, i.e., the volume elements’
in the state space contract as the system evolves,? then the trajectory generally tends
asymptotically to certain compact subsets. If S C M is a compact set and U is the
largest open set that asymptotically contracts to S C U, then S is called an attmc:ting
set and U is called the basin of attraction of S. An attracting set may be reduced into
certain distinct portions, some of which may not be attracting.

All disjoint subsets Aj, A, Aa,...of S that are attracting are called attractors,
while S — (U; A;) is non-attracting. An attractor A C M is associated with the

following four properties (7, 13]:
1. Invariance: If z(0) € A, then f(z(0),t) € A Vi > 0.

2. Attractivity: For some U C M defined in the neighborhood of A, flU,t] C

U and lim¢~ f[U,t] = A.

3. Recurrence: Forevery ¢ > 0 and almost every z(0) € A, 3t > 0such that

lz(0) — z(t)|| < € in effect, the trajectories within an attractor remain

bounded.

4. Indecomposability: An attractor is disjoint from all other attractors and

1Volume elements refer to the small finite chunks of state space.
2The concept of dissipative systems emerges from an Eulerian perspective rather than from a Lagrangian
one.



cannot be split into nontrivial partitions satisfying the three aforemen-

tioned properties.

In dissipative systems, even though the overall size of a volume element decreases,
there can be some directions along which the linear dimension of the volume element
actually expands. However, as the attractors are bounded, the flow then exhibits a
horseshoe-type pattern [13] so that trajectories starting from near-by points within an
attractor A may get separated exponentia,lly as the system evolves. This condition is
known as the sensitive dependence on initial condition, and the attractor A is then
called a strange attractor. A flow £ \) for a particular initial condition, is said to be

chaotic if the trajectories in an attractor exhibit:
1. sensitive dependence on initial conditions but are bounded,
9. irregular and aperiodic behavior, andl
3. continuous broad band spectrum.

Under the absence of dynamic as well as measurement noise, we can define an

invariant probability measure on the attractor of a chaotic process as follows:

Definition 1 A measure pa __which specifically refers to the probability measure in
this contert—defined on A with respect to JICR! is said to be invariant iff ua(A) =

pa(fIA, t}) holds for an at least countably many values of t.

If the trajectory lies in the attractor, an invariant distribution can be naturally ob-
tained because the attractor is a compact set and is invariant under the flow JiG 3.
The existence of an invariant measure for an attractor is ovident from the following

theorem [6]:




Theorem 1 Every continuous dynamic system defined on a compact space admits at

least one invariant probability measure.

Let us denote the probability space constructed from an admissible probability measure
pa as (A, Bap 4). The probability measure may be extracted using the Poincaré

recurrence theorem stated as follows [6].

Theorem 2 Let p:A — A be a measurable transformation on @& probability space
(A,BA,;LA). Let A € Ba have pa(A) > 0. Then for almost all z € A, the orbit

{g_"(_z_)}k?_o returns to A infinitely often.

Specifically, if one chooses A to be a Poincaré section of A passing through o, by
definition of a Poincaré section A is compact and invariant with respect to the Poincaré

map

o*(z) = [(Z(0),tk) s Lk 2 0 (6)

where tx is the time at which the trajectory enters the Poincaré section A. Therefore,
by Theorem 1, A admits a measure pA invariant with respect to e(-). Thus, the
elements of A are separate independent samples of the probability space (A, Ba, 1A )
where By is the Borel algebra constructed on A.

If A is assumed to lie in a small neighborhood of (0) € A on the trajectory,
jie, A= cl[Bc(gc_(O))], a closed ball of size € constructed about z(0), then the local
evolutions from the clements of A are independent realizations and hence separate
events.

Thus, local evolutions from ncighborhood points of a single trajectory through z(0)

may be treated as independent random trajectories emerging from the ncighborhood of

9




z(0). In addition, for a chaotic process, the independent random trajectories emerging
from the neighborhood of a certain initial point (0) € A remain locally close together.
Therefore, (A, By, #4) is a valid probability space with the trajectory-segments emerg-
ing from A as realizations of a stochastic process defined thereon.

However, when the dynamic system is contaminated, the probability space con-
structed from a trajectory thereof is not valid under all conditions because the pres-
ence of noise may destroy the structure of the attractor A. Hence, we call the con-
structed probability space a pseudo-probability space. Thus, from the constructed
psendo-probability space, the separate realizations consists of local evolutions from

the neighborhood of z(0), all belonging to a single trajectory.

2.2 Pseudo-probability space construction procedure

In the foregoing, we assumed knowledge of z(t) € A C M. But when only a scalar
TSD y(n) corresponding to the process output is available, we need to extract samples
using the concept of pseudo-probability space, which in turn requires the topological
notion of neighborhood. For every y(n), there exists.a diffeomorphism mapping y(n)
into the observable portion of z(t). Alternatively, if we reconstruct the attractor of the
original dynamics from the TSD using lag-coordinates (2], there is a diffeomorphism
connecting the reconstructed state vector ((-) and observable subspace of the actual
state vector z(-). The state vector ((+) of the lag-reconstructed dynamics lies in a
vector space of dimension dg, the embedding dimension. We would like to stress that
the procedure for determining an estimate of dg and obtaining ¢(n) is nontrivial. For

the details thereof, the reader is referred to [1].
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Original attractor Lag-reconstructed attractor

20,
&
+
£ 0
b
_201
20
0 0
x2(n) =20 =20  xq(n) y(n+1)-20 =20  y(n)

.gure 1: Rossler attractor obtained from: (a) actual solution of the differential equation,
») lag coordinates.

We illustrate the construction of the pseudo-proabability space through the follow-
ing example. The original attractor and the lag-reconstructed attractor of the Rossler

attractor corresponding to the three first order differential equations

3\ —(z2 + z3)
z= 9 = z1 + 0.15z, ’ (7)
I3 0.20 + 13(2,‘1 - 10.0)

with y(n) = z1(t,), n = 1,2,...N are shown in Figure 6. In the lag-reconstructed
vector space, at a particular point ((n) on the attractor, the set of points {{(n %
€), £ = 0,1,2,...} resulting from the evolution (both forward as well as backward)
of {(n) constitutes a strand. If the TSD is chaotic, two nearby points located in
different strands of the same trajectory (read TSD), locally stay close together before
exponentially diverging-off.

Thus, if we can identily a set of Ng neighbors {("(n), 1 < r < Npg} about a

11



s of the reconstructed trajectory,

specified point Q(n), belonging to different strand

the evolutions of these neighbors approximate the ensembles required 0 compute the

eigenfunctions. The length of the ensembles may be set equal to the length of the

strand, which usually is the decorrelation length L of the TsD (1]. From the artificial

ensembles generated thus, we may obtain the eigenfunctions using a similar procedure

as in KL representation.

3 Extracting local eigenfunctions

From the artifical ensembles generated as described in the previous section, we can

obtain locally optimal basis functions to represent L-length signal ensembles emerging

from A = B(z(0)),an open-ball about z(0). The procedure to extract local eigenfunc-

tions from the artificial ensembles is same as that in KL-representation. The stepwise

methodology of eigenfunction extraction is as follows:

1. Fix the neighborhood size ﬂB(:_r_(()))\\ and the length of the samples, e,

the strand length L.

9. Start with the initial point z(0) on the trajectory.

3. Generate artificial ensembles as described in Section 2.

4. Extract local cigenfunctions from the artifical cnsembles. The procedure

is same as in KL ropresentntion‘

5. Now shift to 2 new location on the trajectory and carry out steps (3) and

(4)-
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ns may be obtained by choosing an appropriate

The best set of local e'rgenfunctio
combination of the ne'rghborhood size \\B(g:_(O))\\ and the length of the samples L (strand
length).
ctions, we can develop 2 local eigenfunct'ron rep-

Using the extracted local eigenfunt
resentation. This is piecewise signal representat'\on based on locally extracted basis
ost all Z € B(z(0))- If we choose 2 sufficiently large neighborhood
rvals or

and is valid for alm
present longer inte

extracted basis to re

e same set of locally
o a singleton set (as

size, we may use th
ands. Over a limit, if we shrink the ball t et with
ntation

more number of str
me-domain represe

the resulting representation becomes a ti
present

only one element),
on is adequate to re

itself. Thus, intuitively, the local eigenfunct'ron representat'r

4-space.
ing 2

any signal in the L

For chaotic signals, we may use the same set of basis functions, extracted us
sufficiently large-s'lzed ball, to represent the whole signal. This claim is substantiated
merical experiments prcscnted in the following:

by the results of nu

mance evaluation

3.1 Numerical perfor
— 3, initial location ¢(0) = (3.2012, 2.6967, 2.2156)7 .

hood of ((0), a8 sh

For the Rossler attractor, we set dE
own in Figure 6,

We found NB = 40 nearest neighbors in & neighbor
and gcnerated 40 ensembles therefrom. Next, we extracted local eigenfunct'rons from
ed ensembles. Only 6 o'rg(\,nfuuct'\ons, chown in Figure 6, were found to be

the generat
dominant and these alone were used for signal representation.
¢ 6 dominant e’rgenf\mctions along the length of the

riately shifting thes
¢ the whole

By approp
cal exhaustive soarch, we were able to accurately represen

signal using lo
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Artificial ensembles
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Local eigenfunctions

~0.3 ! !
0 20 40 60 80
Time index n

) ! !
100 120 140 160

sler attractor. [Here, Ng = 40,

Figure 3: Six dominant local cigenfunctions for the Ros
nfunctions shown).

dp =3, lag =7 and L = 168 (only 158 datapoint-long cige




|
TSD within 8% of the total signal energy- This implies that the local eigenfunction
representation is adequate for chaotic signals. The accuracy of the local eigenfunction
|
| eighborhood size, the Lyapunov exponents of the TSD and the noise

is affected by the n
nsidered signal emanates from an attractor, a compact invariant set.

|
|
| level because the co
However, one major drawback of local eigenfunction representation is the computation
time required to find appropriate shifts of eigenfunct'\ons to represent the signal.

4 Suboptimal wavelet packet representatiori

|
|
l
We used a linear combination of dominant local eigenfunctions as the scaling func-
re the local eigenfunctions extracted from 2 chaotic signal using a

\
| tion. Suppose aj 2

sufficiently large A and

(8)

2
w

1k

1

|

1
NB

Eod
1]

g kP ensemble. The scaling

s of a;(t) while representin

where 5\’; are the coefficient

function is then given by

(1) = S % @) (9)
j€D

where D is the set of dominant cigenfunctions. Here, S(-) is the circular shift operator
which makes the end points identically zero, and then appropr'\atcly decimates the
resulting function. From the vector quantizat'\on standpoint, the undecimated function
is a codebook function (3] in pseudo-probability space.
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Table 1: Comparison of entropies resulting from wavelet packet representation of a signal
from the Rossler attractor using different scaling functions.

| Scaling function | Entropy

Coiflet 1 5.73
Daubechies 4 5.77
Daubechies 20 5.43
Cosine Packet 2.63

Suboptimal 0.03

We used the extracted scaling functions for WP representation of signals from the
Rossler attractor. The length of the ensembles and hence the codebook function was
set to L = 168. We decimated the codebook function by 4 to result in a scaling
function 42 datapoints long. The computed scaling function is shown in Figure 6, and
a comparison of entropy® resulting from WP representation with our scaling function
against the entropies resulting from WP representation with other standard bases [12]
is provided in Table 1. The entropy values of sulboptimal representation are smaller
than those of other standard bases by an order of magnitude. This implies that our
suboptimal basis is more suited other standard bases for representing chaotic signals.
A practical validation of our novel representation scheme is provided in the following

section.

3Entropy is a measure of parsimony of representation. The smaller the value of signal entropy, the greater
is the parsimony. [12)
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Suboptimal scaling function for the Rossler attractor

1 ! ! 1 1 ¥ |

Normalized response

! I ] ! ] 1 | )
0 5 10 15 20 25 30 35 40
Time index n

Figure 4: Scaling function (42 datapoints long) for suboptimal WP representation of the

Rossler attractor.
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Table 2: Comparison of entropies resulting from wavelet packet representation of a signal
from the AE signals using different scaling functions.

ﬂificaling function | Entropﬂ]
Coiflet 1 4.79
Daubechies 4 5.32
Daubechies 20 4.53
Cosine Packet 3.84
Suboptimal 0.05

5 Application to signals from machining sen-

sors

We used the suboptimal wavelet basis to represent the acoustic emission (AE) signals
in machining. For a partcular signal, with L = 76, Ng = 50 and dg = 9, we computed
50 ensembles as shown in Figure 6, and determined the local eigenfunctions therefrom.
Only 3 eigenfunctions, shown in Figure 6, were dominant. From these eigenfunctions,
we constructed a scaling function as described earlier in this paper. The use of this
scaling function substantially reduced the entropy of representation as revealed in Ta-
ble 2. Clearly, the entropy of WP representation with the suboptimal scaling function is
about a magnitude less than that for WP representafion using other scaling functions,

implying the practical effectiveness of our method.

6 Conclusion

We have thus developed a novel representation scheme for contaminated chaotic signals.

It is probably for the first time that a representation scheme for contaminated chaotic
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Figure 5: Artificial ensembles generated from an acoustic emission signal. The artificial

ensembles were generated with Ng = 50, d =9, lag = 6 and L = 60.
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» 6: Three dominant cigenfunctions extracted from the artificial ensembles generated
i acoustic emission signal. The artificial ensembles were generated with Ng = 50,
), lag = 6 and L = 60.
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signals has been developed. This parsimonious suboptimal representation scheme may
be applied to various engineering disciplines where chaotic signals occur, and specifi-
cally to the machining process. In fact, we have met with reasonable success in using
the scaling functions developed in this work to extract signal features from AE signals

for tool wear estimation {2].
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